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J.  Phys. A: Math. Gen. 19 (1986) 3903-3916. Printed in Great Britain 

The minimum gap on diluted Cayley trees 

R B Stinchcombe, P M Duxbury? and P ShuklaS 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 5 February 1986 

Abstract. A new order parameter for percolative systems, the minimum gap (x*), is 
calculated on diluted Cayley trees. x* is self-averaging and finite for concentrations p 
below p c  and zero above. Numerical work (including finite-size scaling) and analytic 
arguments show that on approaching pc  from below, x* - &/[In( 1/ E )  + 1 + In(n - I ) ] ,  where 
Q + 1 is the coordination number of the Cayley tree and E = ( p ,  - p ) / p , .  The behaviour of 
X*  as a function of p (for all p < p , )  is calculated in terms of the solution to a transcendental 
equation, and as p + 0, x* - 1 + Inn/lnp. 

1. Introduction 

Many properties of percolative systems have been studied in recent years. Examples 
include dilute magnetism (Stinchcombe 1983), transport in random media (Deutscher 
et a1 1983) and the elastic properties of random solids (Kantor 1985). A great deal of 
insight into these problems is provided by the study of the geometric percolation 
problem and the backbone topology at p c  (Stauffer 1979, 1985). A natural extension 
of these works is the study of breakdown problems in random media (for an introduction 
to the area see Duxbury et al (1986a)). One such problem is dielectric breakdown on 
percolation clusters below pc. In a recent letter (Duxbury et a1 1986b) we have 
introduced a static approximation to the dielectric breakdown problem in random 
media. The calculation necessitates the introduction of a new order parameter in 
percolative systems below pc .  This new order parameter, the minimum gap, is studied 
in detail on Cayley trees in this paper. A brief account of this calculation has been 
recently reported (Duxbury et a1 1986b). 

To construct a percolative model for dielectric breakdown in quenched random 
media, consider the square lattice bond percolation problem below pc. A typical 
configuration is shown in figure 1( a).  Each occupied bond is considered to be conduct- 
ing, while each vacant bond is an insulator which can withstand a voltage of 1 V. If 
more than 1 Vis applied across a vacant bond, it breaks down and becomes a conductor. 
If a large enough external voltage is applied across the system (see figure l ( a ) ) ,  enough 
of the vacant bonds break down to make the system a conductor. The voltage at which 
this first occurs is called the breakdown voltage. It is straightforward to give a qualitative 
phase diagram for this model, by considering the two cases p = 0 and p 2 p c .  For p = 0, 
the system is composed of insulators only and an external voltage of v b =  L (with L 
as defined in figure l (a ) )  is required to induce dielectric breakdown; while above pc ,  
v b  = 0. The generic phase diagram is then that given in figure 1( b) .  It is straightforward 
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Figure 1. ( a )  The bond percolation problem on a square lattice below p c .  A minimum 
gap path (going from top to bottom) for this configuration is shown (broken line). The 
minimum gap is 2. ( b )  The qualitative phase diagram for the breakdown voltage in quenched 
random media. 

to solve the problem in one dimension and in that case p = 1 and V, = (1 - p ) L .  The 
calculation of V, on regular lattices in d > 1 with 0 < p < p c  requires the solution to 
Laplace's equation on the quenched random lattice and the sequential breakdown of 
any bonds with too much voltage across them. This is a tractable though lengthy 
numerical process and is at present being undertaken by other workers (Bowman 1985). 
Preliminary results are consistent with the picture given in figure l (b) .  

We have instead (Duxbury et a1 1986b) attempted to construct a simple geometric 
model that contains some of the essential physics of the dielectric breakdown process. 
Consider again the model of figure l (a ) .  The basic idea that we use to construct our 
geometric picture of the breakdown process is to consider that the breakdown paths 
that eventually occur on increasing the external voltage lie along the paths with the 
minimum number of vacant bonds. We call these the paths of minimum gap, the total 
number of missing bonds along them being the minimum gap for that configuration. 
The breakdown in the model is then simply proportional to his minimum gap. Clearly 
there are several approximations inherent in this geometric approach (see Duxbury et 
al (1986b) for a discussion). Nevertheless these ideas lead to a qualitatively (and 
perhaps quantitively) correct estimate of the breakdown voltage and should contain 
the essential features of the original dielectric breakdown problem. 

The problem is still a very difficult one. The minimum gap g is a random variable 
and so it will be necessary to consider its distribution P(n, g)  in a system of size n. 
In the large system limit n + a, where the system is expected to become self-averaging, 
the system will exhibit the percolation transition, since the probability of zero minimum 
gap is the order parameter for percolation and is zero (or non-zero) for p s p c  (or 
p > p c ) .  Apart from the ordinary critical phenomena of percolation there is critical 
behaviour of other quantities contained in the minimum gap distribution, of which 
the principal one, with which we are here mainly concerned, is the average minimum 
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gap. This quantity is expected to have a behaviour very like that described above for 
the breakdown voltage, and (when properly normalised) is another order parameter 
for the problem. The minimum gap is likely to be as difficult to treat as the percolation 
conductivity, or diffusion, and so on. 

As a contribution towards the understanding of this quantity, we here consider the 
minimum gap on diluted Cayley trees. Cayley trees (Fisher and  Essam 1961) provide 
a non-trivial percolation threshold (unlike the linear chain) and have been very useful 
in providing the mean-field critical exponents for problems such as percolation conduc- 
tivity (Stinchcombe 1974, Straley 1977). Such problems are still far from trivial, the 
latter, for example, involving the scaling solution of a non-linear integral equation for 
the conductance distribution function. It will be seen in 92, where the model is fully 
introduced, that the minimum gap problem on diluted Cayley trees involves a non-linear 
difference equation in two variables (g  and  n). Numerical investigations of this 
equation are described in 9 4. The results give the nature of the minimum gap 
distribution for various concentrations (above and below the percolation threshold) 
and show that the minimum gap is extensive (of order n )  for p < p c  and of order 1 for 
p 2 pc .  This suggests using the large system limit of the normalised minimum gap g/ n 
as an order parameter. Numerical results also strongly suggest that this ‘reduced 
minimum gap’ vanishes linearly as p tends to p c  from below, with the possibility of, 
e.g., logarithmic corrections. Section 4 provides an analytic treatment of the properties 
of the minimum gap. Using procedures suggested by the insight gained from the 
numerical data in the large system limit, a solution is found for the minimum gap in  
the large system limit. This solution is in close agreement with the numerical results: 
it confirms the numerical result for the critical exponent describing the vanishing of 
the minimum gap and shows that there are logarithmic corrections. It also describes 
an  unexpected feature seen in the numerical results for the gap at very low concentra- 
tions. The results and implications are further discussed in 9 5. 

2. The model 

The system geometry is depicted in figure 2 ( a )  for a Cayley tree with coordination 
number z = 3. Each bond may be present or absent with probability p or  (1 - p ) .  The 
parameter n labels successive levels on the tree. Each vertex at level n has z - 1 = a 
subtrees incident from below. Let P(n, g) denote the probability that the minimum 
gap from bottom to top  (i.e. level n )  across such a subtree is g. Clearly 

P(0 ,  g) = 6(g) (1) 

from ‘no gap at level zero’ and normalisation, respectively. Though P(n, g) is the 
distribution function of interest to us, it is convenient to work in terms of the related 
quantity, 

x- 

U ( n ,  g)= c W n ,  g’) ( g 2  -1). 
g ’ = g + l  

From (1) and (2) above, U ( n ,  g) must satisfy 

(3) 

U (  n, g) is the probability that the minimum gap is greater than g ‘at level n’. U (  n, g) 
and P(n, g) are both functions of the bond concentration p as well as n and g. 
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Figure 2. ((I) The e = 2 Cayley tree. ( 6 )  The labelling system used in the analysis 

The simplifying feature of the Cayley tree model is the statistical independence of 
the outward branches (because of the absence of closed loops). Moreover, it can be 
described by recursion relations in the following manner, which relate the properties 
at successive levels. For the tree shown in figure 2 ( a ) ,  consider the subtree shown in 
figure 2( b )  which is sufficient to discuss for level n + 1 the probability l i ( n  + 1, g )  of 
minimum gap being greater than g. We consider in turn the cases in which the top  
bond in figure 2 ( b )  is present (probability p )  and absent (probability 1 - p ) .  In the 
first case the minimum gap at n + 1 is greater than g if the U subtrees incident at n all 
have minimum gap greater than g. In the second case the minimum gap at n + 1 is 
greater than g if all the a subtrees incident at n have minimum gap greater than g - 1. 
Adding the probabilities of these two exclusive events gives 

U ( n +  1, g ) = p [ U ( n ,  g ) l " + ( l  -p ) [U(n ,g - l ) l "  (n ,g>O).  ( 6 )  

This is the fundamental equation of this paper. It is a non-linear recursion in two 
variables n, g. By iterating it out from (4) and ( 5 )  to an appropriate value of n it gives, 
in principle, the distribution from the minimum gap across a full tree of type shown 
in figure 2(a ) .  Unfortunately, the complete analytic treatment of such an equation is 
impossible, as the intricacies of better known non-linear iterative maps make obvious 
(see, for example, Schuster 1985). 

It is, however, easy to extract the percolation transition from (6 ) ,  by considering 
the special case g = 0. For this special case (6) becomes, using ( 5 ) ,  

U ( n  + 1,O) = p [  U ( n ,  O ) ] "  +(1  - p )  (7 )  

which is now a one-variable map. The further discussion of ( 7 )  will be continued for 
the case a = 2 ,  which is algebraically simple though it retains the essential features of 
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the general case. For (Y = 2, the map (7) has fixed points at 

U*(O) = 1, (1 - P ) l P .  (8) 

For 1 - p  < p  both fixed points are physically accessible ( U ( n ,  g )  1) and, under 
iteration in the direction n 3 n + 1, the fixed points being relatively unstable, stable, 
U(n,O) converges for ~ + C O  towards the attractive fixed point value (1 - p ) / p .  For 
(1 - p )  > p the second fixed point is unphysical, but the first fixed point is attractive 
so U (  n, 0) + 1. The two situations correspond to being on either side of the percolation 
transition since the resulting thermodynamic limit ( n  -$ CO) is ( a  = 2) 

U(o0,O) = 1 p < p c = !  2 

= ( I  - P ) / P  P ' P C .  ( 9 )  

Further, 

1 - U ( q  0) = P(C0,O) (10) 

is an  appropriate order parameter (the probability of zero minimum gap).  For general 
a,  the change in stability of the fixed points occurs at the percolation threshold 

p = p c =  lla. (11) 

However, the second fixed point in (8),  and hence the value in (9) of U(m,O) for 
p > p c ,  is now replaced by the solution of an  equation of order a. 

The behaviour of U (  n, 0) at large n (i.e. the finite-size effects) can be obtained by 
linearising around the stable fixed point U(c0,O). In this way, it can be easily shown 
that the convergence of U (  n, 0) to U(m, 0) is like 

(12) U(m, 0) - U ( n ,  0) - C ( p ) { p . [  U(=, o)]"-')" 
at large n, where C ( p )  = U(c0,O).  For p < p c ,  (12) becomes C ( p / p c ) "  and in general 
the convergence with n is extremely rapid, except near p = p c  where it goes like 
exp( - n / ( )  with 6 the percolation correlation length. 

Further analytic investigation of (6) is more complicated and is deferred until 0 4, 
following the next section in which the results of a numerical attack are presented, 
which provide an  insight into the later analysis. 

3. Numerical calculations 

It is straightforward to perform a direct iteration of (6) to high order. The calculations 
need only be monitored to ensure that loss of precision due to round-off error does 
not occur to a significant degree. The results of a direct iteration of (6) to order 50 
are presented in figure 3 for several values of p and a = 2. The results for different 
a are qualitatively similar. The striking feature of figure 3 is the narrow range of g 
over which the function U ( n ,  g) changes from a value which is very close to 1 to a 
value which is very close to 0. This crossover region occurs for p G pc  at g - g* OC n. 
Since in this p region g* is extensive, it is appropriate to use 

x = g / n  (13) 

as the scaling variable. The sharp crossover in U (  n, g)  is reflected directly in the 
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Figure 3. Numerical results for U ( n ,  g) against g / n  from the iteration of ( 6 )  to n = 50, 
for various values of p .  A, 0; B, 0.1; C, 0.3; D, 0.5; E, 0.7. 

P(n, g )  is sharply peaked at g*. This is an indication of the fact that the minimum 
gap is self-averaging even on a Cayley tree. x* g*/n  is then essentially an order 
parameter for p s p c  and is non-zero for p c p c  and zero for p > pc. 

For p > pc ,  U (  n, g )  converges rapidly with n to an  n-independent limit U ( a ,  g )  
(thus the g with appreciable probability are order l) ,  and hence the probability 
distribution for x = g / n  is zero for x # 0 in the thermodynamic limit. This is another 
statement of the fact that, for p > p c ,  x* = 0. 

In the numerical calculations it is more convenient to use the average minimum 
gap defined by 

n 

a n ) =  c g P ( n , g ) .  (15) 
g=o 

This quantity then becomes g*  in the thermodynamic limit. Results for X = g/n for 
finite systems are shown in figure 4 for various values of p .  The curves converge rapidly 
with the level number n and an  n + C O  extrapolation indicates that x* behaves as an  
order parameter should as p + pc ,  vanishing continuously as follows: 

which defines the critical exponent p. The other marked feature of figure 4 is the steep 
approach to X = 1 as p + 0. This is very different from the linear approach that one 
might have expected and  is further elucidated in the analytical calculations of the next 
section. Before proceeding to that work we calculate the critical exponent p appropriate 
to x* (=%(a)) near pc. 

In the standard finite-size scaling viewpoint, the order parameter x behaves as 

%(CO)  - ( P c - P ) ”  (16) 

X(n) = g / n  = (;”’”@([/n) (17) 
for n, &+ a, where 

5 C - ( P c - P ) - ”  (18) 
is the chemical distance. The usual crossover scaling argument implies that, at p = pc ,  
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P 

Figure 4. Numerical results for ,f for several values of n. The dotted line is the infinite 
limit extrapolation. 

one has 

n( n )  - n-p’”. (19 )  

In the case of the Cayley tree, v = 1. 
Plots of the numerical data for 3 against 1/ n at p = pE for a = 2 and 8 are presented 

in figure 5. The large n behaviour is found to be independent of a and the curves are 
linear up  to logarithmic corrections. Using (18), with the Cayley tree value of v, leads 
to 

p = 1. (20) 

Using the general picture obtained from the above analysis we now construct 
analytic methods to study the problem. 

4. Analytic treatment 

Although it is impossible to solve ( 6 )  exactly for general g ,  n, it is possible to obtain 
the thermodynamic limit and to explain the numerical results given in the previous 
section. 

Let us suppose that U (  n, g )  possesses a well defined thermodynamic limit ( n  + a) 
U(o0, g ) .  The numerical results already show that this is the case for p 9 pc,  but it is 
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Figure 5. Numerical results for f i p , )  against  I / n  for two values of a. p = p c .  

anyway instructive to see how this arises within an  analytic discussion. If the assump- 
tion is permissible, it is only necessary to consider U(m,  g )  or, equivalently, 

V ( g )  = [ U ( X ,  g)IU. (21) 

V( -1) = 1 (23) 

and, since V is the a t h  power of a probability, it lies in the interval [0, 13. 
(22) is a single-variable non-linear iterative map, shown in figures 6 ( a ) ,  ( b )  and 

(c)  for the three cases p > p c  = l / a ,  p = p c  and p < p c  respectively. The map function 
f (  V) has the forms shown in the figure because V = 0 and V = 1 are fixed points of 
the map, and  

f ' (1 )  = ( p c - p ) / ( l  -PI (24) 

so the slope o f f  at V = 1 is positive or negative depending on whether p is less than 
or greater than pc .  The physical range is the interior of the unit square in the figures. 

Case ( i )  p > pc. For the regime p > pc  successive mappings from V( - 1) (unity, according 
to (23)) to V(O), to V ( l ) ,  etc, can be carried out by following the zig-zag curve in 
figure 6 ( a )  in the direction of the arrow. The successive values of V(g)  fall rapidly 
from 1 in just the way already demonstrated in the numerical results for U (  n g )  against 
g at p > p c  in figure 3. The tail of the distribution can be obtained as follows. Once g 
is such that V(g)  is sufficiently small, f( V) can be approximated by V""( 1 - p ) - ' .  
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, Figure 6. The map function f[ V i s ) )  (see equation 
( 2 2 ) )  for ( a )  p > p c ,  ( b !  p = p c  and ( c )  p < p c .  Vigl 

Subsequent iterations (increasing g by 1 at each step) then simply multiply In[ V(1- 
P)"""-" ] by CY at each step, so 

(25) 

for all g such that V(g)  is sufficiently small. L ( p )  is a g-independent positive quantity 
which can be obtained by matching ( 2 5 )  to the value of V(g) at the lowest g for which 
V(g) is sufficiently small to make (25) applicable. For p > p c  such g are of order 1 or 
2 except near pc.  The essential point is that for p > p c  an n-independent thermodynamic 
limit is consistently obtained within this analytic framework and in the numerical work. 

Case ( i i )  p G p c .  However, for p s p c  the n-independent one-variable iterative map 
approach breaks down because the initial condition (23)  starts the mapping at a place 
from which no escape is made in a finite number of iterations. Though this is strictly 
correct (since l imn+= U (  n, g) = 1 if g is held finite) and related to the plateau behaviour 

V(g)  - (1 - p )  - a ' ' n  I '  exp[ - a g L ( p  , I  

Peen in the niimerical reciiltc fnr l l ( n  c\ it dnpc nnt heln iic tn nhtnin Rn nvetall ---.. _ _ _  ...- -.-...-..--~ .-I-..I .-- - \..) o,, .. ---- ..". ~ ~ - . ~  -I -- ---.-.-. -__ _.----. 
picture of U ( n ,  g) at large n, whose structure occurs over a range of g proportional 
to n, according to the numerical work. It is essential to retain the n dependence in 
(6) to set the scale of the g dependence if p d pc .  Nevertheless, the tail region ( Vc< 1) 
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can again be treated as before, and again has the form (25) except that in this case 
( p  s p J ,  the matching quantity L ( p ) ,  while remaining g-independent, is n-dependent 
(proportional to where g* is defined in 0 3 and immediately below) even for 
large n, and is therefore not accessible within the approach given so far. 

A treatment of (6) for the regime p < pc ,  retaining the n as well as the p dependence, 
is therefore required. The non-linearity of (6) makes a complete treatment impossible. 
However, a linearised approach based on the following considerations will lead to the 
complete thermodynamic limit. According to the numerical work, U (  n, g)  is very close 
to 1 in the plateau region extending out to g = g* 0: n, at which U (  n, g)  turns down 
rather abruptly. It will turn out from the subsequent analysis that in the large n limit 
U(n, g)  is arbitrarily close to 1 in the plateau region, so that linearisation in 

f (n ,  g )  55 1 - g )  (26) 

is valid there, and that it then drops by a finite (n-independent) fraction of its plateau 
value as g / n  increases by O ( l / n )  beyond the 'edge' (g/n = O(1)) of the plateau, 
moving into the tail which (by (25)) decays over a further increase of g /n  by O ( l / n ) .  
Thus in the thermodynamic limit, U is a step function in the reduced variable g/n,  
and the edge of the step can be located by determining where the linearisation in f 
begins to break down. 

The linearised approach is now presented. The recursion equation resulting by 
writing ( 6 )  in terms off ,  using (261, and discarding powers off higher than the first is 

n, g 3 0. f ( n  + 1 9 8 )  = paf( n, g)  + a ( 1 - plf( n, g - 1 )  

f(0, g)  = 1 - S(g + 1 )  

f( n, - 1 )  = 0. 

(27) 

The boundary conditions corresponding to (4) and (5) are 

(28) 

(29) 
It is convenient to introduce the generating function 

Because of (29), 

F ( t ,  -1)=O. (31) 

Multiplying (27) by t" and summing over n from 0 to CO gives 

( F ( 4  g)-f(O,g))/t=paF(t,g)+a(l-p)F(t,g-l) g 3 0  (32) 

or, using (28) and noting that 8 3 0 ,  

( 1 /  t - p a )  F (  t ,  g)  = a ( 1 - p ) F (  t, g - 1 )  + 1 /  t (33) 

F ( t ,  8) = 4 t ) [ r ( t ) l g + a ( t )  g 3 - 1  (34) 

Y ( t )  = [ a ( l  -p)t1/(1 - p a t )  (35) 
a (  t )  = 1/(1- a t ) .  (36) 

g 3 0 .  

The form 

solves this one-variable linear difference equation, provided 
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A(r )  is then determined by the boundary condition (31), so 

F (  t ,  g)  = { 1 -[a( 1 - p ) / (  1 -pa t ) ]g+ '} / (~  - ar). (37) 

The coefficient of t" in the expansion of this gives f(n,  g),  by virtue of (30). The 
coefficient is easily obtained since 

Thus 

f(n,  g )  = a" g z n  (39) 

PS g <  n. (40) 
( g + s ) !  f (n ,  g)  = an(1 - p ) g + l  2 ___ 

s = n - g  s!g! 

(39) should be discarded, since it is outside the regime in which the linearisation 
procedure used to get it is valid. The awkward sum (40) can be replaced as follows 
by an integral in the thermodynamic limit in which g and n are comparably large: 

02 

ds exp[ln(g + s)!  - In g!  - In s! + s In p + O( l)] .  (42) 
= I., 

Using Stirling's approximation for the factorials and making the change of variables 
to y = s / n  and 

gives 
x = g / n  

I = n I  dyexp[n..;y)+O(l) 
oc. 

I - X  

where 

(43) 

(44) 

h ( y )  = (x + y )  ln(x + y )  - x In x - y In y + y In p .  (45) 
Since n is large, a Laplace method can be used to evaluate the integral (44), which 

is dominated by the contribution coming from the vicinity of a maximum stationary 
point of h ( y )  or an endpoint of the interval of integration. It is easy to check that 
h ( y )  has a maximum stationary point at y = p x / ( l  - p )  lying within the integration 
interval if (1 - p )  < x. However, if 1 - p  > x, the largest value of h ( y )  is at the endpoint 
y = 1 - x. It is not consistent to take (1 - p )  < x, which results in f( n, g )  - a" (violating 
the linearisation assumption). Taking (1 - p )  > x gives 

(46) 
(47) 

I = exp[ nh(  1 - x)  + O(l)]/lh'( 1 - x)l 
= exp(n{(l -x )  In [p / ( l  - x)] - x  In x}+O(1)). 

Hence using (40) and (41): 
f(n,  g)=exp(n{(l  -x )  lnTp/( l -x) ]+xln[( l -p) /x]+ln  a}+0(1)) 

provided 

x = g/ n < ( 1 - p ) .  
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The exponent in (48) changes sign, from negative to positive, as x increases through 
x*(p) where 

(1-x*) ln[p/(l-x*)]+x* In[(l-p)/x*]+ln a =O( l /n ) .  (49) 

Since the exponent is also proportional to n, the statements made when introducing 
(26) all follow. In particular, in the thermodynamic limit, U(n, g) becomes the 
following step function: 

lim U( n, nx) = O(x*(p) - x). 
n-m 

From (13) it follows therefore that in the regime p G pc,  the distribution for x = g/ n 
is arbitrarily strongly peaked around x = x* in the thermodynamic limit, so that the 
system is self-averaging and the minimum gap x becomes the solution x* of equation 
(49) with right-hand side zero (the O( l /n )  correction can be considered to obtain 
finite-size effects). The solution of (49) satisfies (1 - p )  > x, confirming the initial 
assumption. 

The analytic results for the minimum gap for p S pc  in the thermodynamic limit 
are given by the solution to (49) in the n + CO limit. This solution is given in figure 7. 
For p > p c  the gap is zero since the treatment of the regime p > p c  shows (cf (25)) that 
V(g) disappears beyond a tail extending out to g = O( l ) ,  so that in the thermodynamic 

P 

Figure 7. The order parameter x* as a function of p found from the solution to (49). 
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limit, g / n  is zero with probability 1. A comparison of the numerical curve of figure 
4 with the analytic one of figure 7 confirms the correctness of the analytic approach 
and the high accuracy of the numerical calculations at large n. 

The concentration dependence of the reduced gap in the most interesting regimes 
p - p c  and p - 0 can be obtained analytically from (49) (in the thermodynamic limit, 
for p 

From (49), x* is zero at p = p c =  l / a .  I f  

p c )  with the results given below. 

( a )  p - P c  

= ( P c - P ) / P c  

is small, x* is also small, and satisfies (using (49)) 

x*[ln(cx-l)-lnx*+l]-&+~(&~,(x*)*Inx*)=~. ( 5 2 )  

x* = E / [  1 + l n ( a  - 1) -In E + O(ln In( 1/ E ) ) ] .  ( 5 3 )  

p = l  (54) 

Thus, in the critical region p just less than pc ,  the reduced minimum gap is 

This shows that the critical exponent p for the gap as defined above is exactly 

confirming the conclusion from the numerical analysis. It also shows the presence of 
a logarithmic correction term. 

Equation (49) gives x* = 1 at p = 0. For small p ,  
( b )  p - 0  

6 = (1 - x * )  ( 5 5 )  
is small, and the equation leads to 

6 ln(p /S)  + (6  - p )  +In a +o(s’, p 2 )  = 0. 

Therefore 

6 =In  cr/[ln(ln a l p )  -O(ln In( l /p))]  

S = -In a / l n  p .  

(57)  
which to leading order is 

( 5 8 )  

This explains the shape near p = 0 of the curves for x*  = g / n  (figures 4 and 7 ) .  

5. Conclusions 

A new order parameter for percolative systems has been studied on Cayley trees. This 
quantity, the minimum gap, is of relevance in the study of dielectric breakdown in 
random media, as well as providing a new tool in the study of the geometric percolation 
problem. The Cayley tree calculations presented here give an exact solution for a case 
with a non-trivial percolation threshold. A summary of results we have found is as 
follows. 

(i) The (reduced) minimum gap is a good order parameter on Cayley trees. 
Numerical and  analytical results indicate that it self-averages in the thermodynamic 
limit, is finite below p c  and is zero above p c .  
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(ii) A linearisation of the full Cayley tree equation ( 6 )  about U = 1 leads to results 
which are exact in the thermodynamic limit. The full behaviour of the order parameter 
in this limit is given (for p S p J  by the solution to (49) (figure 7 ) .  

(iii) There are two critical behaviours present in the model: ( a )  as p + p c  the 
minimum gap goes to zero with exponent 1 and has logarithmic corrections (equation 
(53)), and ( b )  as p + 0 the minimum gap becomes x* - 1 +In a / l n  p (equations ( 5 7 )  
and ( 5 8 ) ) .  
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